
www.manaraa.com

 

tr.doc – 5/11/95 1

 

U-Net: A User-Level Network Interface
for Parallel and Distributed Computing

 

Computer Science Technical Report “to appear”
DRAFT — Comments welcome

 

Anindya Basu, Vineet Buch, Werner Vogels, Thorsten von Eicken

Department of Computer Science
Cornell University
Ithaca, NY 14853

 

Abstract

 

The U-Net communication architecture provides processes with a virtual view of a network
device to enable user-level access to high-speed communication devices. The architecture, imple-
mented on standard workstations using off-the-shelf ATM communication hardware, removes the
kernel from the communication path, while still providing full protection. 

The model presented by U-Net allows for the construction of protocols at user level whose per-
formance is only limited by the capabilities of network. The architecture is extremely flexible in the
sense that traditional protocols like TCP and UDP, as well as novel abstractions like Active Mes-
sage can be implemented efficiently. A U-Net prototype on an 8-node ATM cluster of standard
workstations achieves 15Mbytes/s TCP bandwidth with 1Kbyte buffers and demonstrates perfor-
mance equivalent to Meiko CS-2 and TMC CM-5 supercomputers on a set of Split-C benchmarks.

 

1 Intr oduction

 

The increased availability of high-speed local area
networks has shifted the bottleneck in local-area com-
munication from the limited bandwidth of network fab-
rics to the software path traversed by messages at the
sending and receiving ends. In particular, in a traditional
UNIX networking architecture, the path taken by mes-
sages through the kernel involves several copies and
crosses multiple levels of abstraction between the
device driver and the user application. The resulting
processing overheads limit the peak communication
bandwidth and cause high end-to-end message latencies.
The effect is that users who upgrade from ethernet to a
faster network fail to observe an application speed-up
commensurate with the improvement in raw network
performance. A solution to this situation seems to elude
vendors to a large degree because many fail to recognize
the importance of per-message overhead and concen-

trate on peak bandwidths of long data streams instead.
While this may be justifiable for a few applications such
as video playback, most applications use relatively
small messages and rely heavily on quick round-trip
requests and replies. The increased use of techniques
such as distributed shared memory, remote procedure
calls, remote object-oriented method invocations, and
distributed cooperative file caches will further increase
the importance of low round-trip latencies and of high
bandwidth at the low-latency point.

The use of clusters of workstations interconnected by
a high-speed LAN for new application domains also
increases the demand for new network protocols. The
traditional networking architecture which places all pro-
tocol processing into the kernel cannot provide the flexi-
bility required for such demands. For example, the
transmission of MPEG compressed video streams can
greatly benefit from customized retransmission proto-
cols which embody knowledge of the real-time demands
as well as the interdependencies among video
frames[REF].

One of the most promising techniques to improve net-
working layer performance on workstation-class
machines is to move parts of the protocol processing
into user space. This paper argues that in fact the entire

 

Copyright 

 



 

1995 by A. Basu, V, Buch, W. Vogels, and T. von
Eicken.

For further information, email tve@cs.cornell.edu or browse
http://www.cs.cornell.edu/Info/Projects/U-Net/

The software described in this paper will be made available in
source form, except for the SBA-200 firmware which can
only be distributed as object code.

 
 

This document was created with FrameMaker 4.0.4



www.manaraa.com

 

tr.doc, 4/1/1994 | 

 

DRAFT — Please do not distribute

 

 | 2

protocol stack should be performed at user level and that
the operating system and hardware should allow pro-
tected user-level access directly to the network. The
goal is to remove the kernel completely from the critical
path and to allow the communication layers used by
each process to be tailored to its demands. The key
issues that arise are

• multiplexing the network among processes,

• providing protection such that processes using the
network cannot interfere with each other,

• managing limited communication resources without
the aid of a kernel path, and

• designing an efficient yet versatile programming
interface to the network.

Some of these issues have been solved in more recent
parallel machines such as in the CM-5, the Meiko CS-2,
and the IBM SP-2, all of which allow user-level access
to the network. However, all these machines have a cus-
tom network and network interface, and they usually
restrict the degree or form of multiprogramming permit-
ted on each node. This implies that the techniques devel-
oped in these designs cannot be applied to workstation
clusters directly.

This paper describes the U-Net architecture for user-
level communication on an off-the-shelf hardware plat-
form (SparcStations with Fore Systems ATM interfaces)
running a standard operating system (SunOS 4.1.3). The
communication architecture virtualizes the network
device so that each process has the illusion of owning
the interface to the network. Protection is assured
through kernel control of connection setup and tear-
down. The U-Net architecture is able to support both
legacy protocols and novel networking abstractions:
TCP and UDP as well as Active Message are imple-
mented and exhibit performance that is only limited by
the processing capabilities of the network interface.
Using Split-C, a state-of-the-art parallel language, the
performance of seven benchmark programs on an ATM
cluster of standard workstations rivals that of current
parallel machines. In all cases U-Net was able to expose
the full potential of the ATM network by saturating the
140Mbits/sec fiber, using either traditional networking
protocols or advanced parallel computing techniques.

The major contributions of this paper are to propose a
simple user-level communication architecture
(Sections 2 and 3) which is independent of the network
interface hardware (i.e. allows many hardware imple-
mentations), to describe two high-performance imple-
mentations on standard workstations (Sections 4 and 5),
and to evaluate its performance characteristics for TCP
and RPC communication (Section 6) as well as for com-
munication in parallel programs (Sections 7 and 8).

While other researchers have proposed user-level net-
work interfaces independently, this is the first presenta-
tion of a full system which does not require custom
hardware or OS modification and which supports tradi-
tional networking protocols as well as state of the art
parallel language implementations. Since it exclusively
uses off-the-shelf components, the system presented
here establishes a baseline to which more radical pro-
posals that include custom hardware or new OS archi-
tectures must be compared to.

 

2 U-Net Motivation and Design

 

The U-Net architecture focuses on reducing the pro-
cessing overhead required to send and receive messages.
In addition, it provides flexible access to the lowest lay-
ers of the network. The intent is to enable the use of
clusters of workstations for applications that require
low-latency communication, to reduce the cost of
achieving high bandwidth, and to facilitate the use of
novel communication protocols.

The term 

 

processing overhead

 

 is used here to refer to
the time spent by the processor in handling messages at
the sending and receiving ends. This may include buffer
management, message copies, checksumming, flow-
control handling, interrupt overhead, as well as control-
ling the network interface. As shown in Figure 1, sepa-
rating this overhead from the 

 

network latency

 

distinguishes the costs stemming from the network fab-
ric technology from those due to the networking soft-
ware layers.

Recent advances in network fabric technology have
dramatically improved network bandwidth while the
network latency and the processing overheads have not
been affected nearly as much. The effect is that for large
messages, the 

 

end-to-end latency

 

—the time from the
source application executing “send” to the time the des-
tination application receiving the message—is domi-
nated by the transmission time and thus the new
networks offer a net improvement. For small messages,
however, the processing overheads dominate and the
improvement in transmission time is not only insignifi-

 

Figure 1: Processing overhead, network latency, and end-to-
end latency.

 

CPU

NIM

CPU

NI M

switch

processing
overhead

network latency

processing
overhead

end-to-end latency



www.manaraa.com

 

tr.doc, 4/1/1994 | 

 

DRAFT — Please do not distribute

 

 | 3

cant in comparison but also offset by the introduction of
switches into the network.

 

2.1 The Importance of low-overhead low-latency 
communication

 

Against the backdrop of ever improving performance
for large messages, small messages are becoming
increasingly important in many applications. For exam-
ple, in distributed systems:

• Object-oriented technology is finding wide-spread
adoption and is naturally extended across the network
by allowing the transfer of objects and the remote
execution of methods (e.g., CORBA and the many
C++ extensions). Objects are generally small, relative
to the message sizes required for high bandwidth
(around 100 bytes vs. several Kbytes) and thus com-
munication performance suffers unless message over-
head is low.

• The electronic workplace relies heavily on sets of
complex distributed services which are intended to be
transparent to the user. The majority of such service
invocations are requests to simple database servers
that implement mechanisms like object naming,
object location, authentication, protection, etc. The
message size seen in these systems range from 20-
80 bytes for the requests and the responses generally
can be found in the range of 40-200 bytes.

• To limit the network traversal of larger distributed
objects, caching techniques have become a fundamen-
tal part of most modern distributed systems. Keeping
the copies consistent introduces a large number of
small coherence messages. The round-trip times are
important as the requestor is usually blocked until the
synchronization is achieved.

• Software fault-tolerance algorithms and group com-
munication tools often require multi-round protocols,
the performance of which is latency-limited. Low-
latency communication prevents such protocols to be
used today in process-control applications, financial
trading systems, or multimedia groupware applica-
tions.

Without projecting into the future, existing more gen-
eral systems can benefit substantially as well:

• Reliable data stream protocols like TCP have buffer
requirements that are directly proportional to the
round-trip end-to-end latency. For example the TCP
window size is the product of the network bandwidth
and the round-trip time. Achieving low-latency will
keep the buffer consumption within reason and thus
make it feasible to achieve maximal bandwidth.

• Numerous client/server architectures are based on a
RPC style of interaction, by drastically improving the

communication latency for requests, responses and
their acknowledgments, a large number of systems
may see significant performance improvements.

• Although remote file systems are often categorized as
bulk transfer systems, they depend heavily on the per-
formance of small messages. A week-long trace of all
NFS traffic to the departmental CS fileserver at UC
Berkeley has shown that the vast majority of the mes-
sages is under 200 bytes in size and that these mes-
sages account for roughly half the bits sent[1].

In addition, many researchers propose to use networks
of workstations to provide the resources for compute
intensive parallel applications. In order for this to
become feasible, the communication costs across LANs
must reduce by more than an order of magnitude to be
comparable to those on modern parallel machines.

 

2.2 The bottleneck in traditional networking archi-
tectures

 

The introduction of ATM networks to standard off-
the-shelf workstations promised high bandwidth links as
well as low network latency due to the small ATM cells,
avoiding the high-latency problems that arose with
FDDI. Experiments, however, show that ATM networks
plugged into the traditional networking architectures fail
to meet this promise. Although high bandwidth can be
achieved, this is only possible under unreliable condi-
tions and only when using large buffers and large mes-
sages.

In fact, the end-to-end latency for small messages is
worse over ATM than over Ethernet and does not at all
mirror the capabilities of the underlying network. A pre-
liminary analysis of the interaction between the Fore
SBA-200 ATM interface and the SunOS 4.1.3 kernel
reveals that the main additional processing overhead is
in buffer handling at the device control level. At both
the sending and the receiving end a number of costly
operations have to be performed to match the device
buffer and memory abstractions with the kernel buffers
(mbufs) and to handle data alignment restrictions. The
failure of the operating system software to exploit the
capabilities of the ATM network can be attributed to a
large degree to the use of generalized buffer and data
transfer strategies.

In summary, a new abstraction for high-performance
communication is required to deliver the promise of
low-latency, high-bandwidth communication to the
applications on standard workstations using off-the-
shelf networks.



www.manaraa.com

 

tr.doc, 4/1/1994 | 

 

DRAFT — Please do not distribute

 

 | 4

 

2.3 Towards a new networking architecture

 

The central idea in the new abstraction is to simply
remove the kernel from the critical path of sending and
receiving messages. This eliminates the system call
overhead, and more importantly, offers the opportunity
to streamline the buffer management which can now be
performed at user-level. As several research projects
have pointed out, eliminating the kernel from the send
and receive paths requires that some form of a message
multiplexing and demultiplexing device (in hardware or
in software) is introduced for the purpose of enforcing
protection boundaries.

The approach proposed in this paper is to incorporate
this mux/demux directly into the network interface (NI),
as depicted in Figure 2, and to move all buffer manage-
ment and protocol processing to user-level. This, in
essence, virtualizes the NI and provides each process the
illusion of owning the interface to the network. Such an
approach raises the issues of selecting a good virtual NI
abstraction to present to processes, of providing support
for legacy protocols side-by-side with next generation
parallel languages, and of enforcing protection without
kernel intervention on every message.

 

2.4 Related work

 

A number of the issues surrounding user-level net-
work interface access have been studied in the past. For
the Mach3 operating system a combination of a power-
ful message demultiplexer in the microkernel, and a
user-level implementation of the TCP/IP protocol suite
solved the network performance problems that arose
when the Unix OS-Server was responsible for all net-
work communication. The performance achieved is
roughly the same as that of a monolithic BSD sys-
tem.[13]

 

U

U

U

U

K

 

node 1

 

U

U

U

U

K

 

node 2

 

User

Operating

U

U

U

U K

 

node 1

 

M

U

U

U

UK

 

node 2

 

M

Message

 

Figure 2: The traditional networking architecture (a) places the
kernel in the path of all communication. The U-Net architec-
ture (b) only uses a simple multiplexing/demultiplexing
agent—that can be implemented in hardware—in the data
communication path and uses the kernel only for set-up.

 

a)

b)

Legend:

 

kernel

mux/demux

U
application

K system

M

 

More recently, the 

 

application device channel

 

 abstrac-
tion, developed at the University of Arizona, provides
application programs with direct access to the experi-
mental OSIRIS ATM board[8]. A packet filter style
demultiplexer, implemented in hardware, combined
with the 

 

fbufs

 

 cross-domain buffer management[7] is
developed to achieve the high bandwidth data transfers
that are the goal of the project. [Need more details]

The software architecture built to support the HP
experimental 

 

Jetstream 

 

LAN[9] (800 Mbits, timed-
token LAN) also makes provisions (with support of the

 

Afterburner 

 

board) for user-level communication proto-
cols. The main focus of the project is on support for high
bandwidth (>200 Mbit) byte stream applications. [Need
more details]

In the parallel computing community recent machines
(e.g., Thinking Machines CM-5, Meiko CS-2, IBM SP-
2, Cray T3D) provide user-level access to the network,
but the solutions rely on custom hardware and are some-
what constrained to the controlled environment of a
multiprocessor. On the other hand, given that these par-
allel machines resemble clusters of workstations ever
more closely, it is reasonable to expect that some of the
concepts developed in these designs can indeed be
transferred to workstations.

Successive simplifications and generalizations of
shared memory is leading to a slightly different type of
solution in which the network can be accessed indirectly
through memory accesses. Shrimp[2] uses custom NIs
to allow processes to establish channels connecting vir-
tual memory pages on two nodes such that data written
into a page on one side gets propagated automatically to
the other side. Thekkath[16] proposes a memory-based
network access model that separates the flow of control
from the data flow. The remote memory operations have
been implemented by emulating unused opcodes in the
MIPS instruction set. While the use of a shared memory
abstraction allows a reduction of the communication
overheads, it is not clear how to efficiently support leg-
acy protocols, long data streams, or remote procedure
call.

 

2.5 U-Net design goals

 

The first and predominant goal of the U-Net architec-
ture is to achieve high-performance low-latency com-
munication. More specifically, the following
performance criteria should be met:

• the latency experienced by the application is domi-
nated by the time the messages spend on the wire,

• low-latency is achieved by minimizing the send and
receive overheads, and

• high bandwidth is achieved for small messages with-



www.manaraa.com

 

tr.doc, 4/1/1994 | 

 

DRAFT — Please do not distribute

 

 | 5

out sacrificing latency.

What sets U-Net most apart from the proposals dis-
cussed above are the concept that the above goals
should be achieved on widely available standard work-
stations using off-the-shelf communication hardware,
and the fact that U-Net builds a foundation that supports
legacy as well as innovative protocols. This means that
the architecture should be designed to:

• satisfy traditional protocols and simultaneously open
doors for ubiquitous use of new communication
abstractions such as 

 

Active Messages[18]

 

,

• be simple, understandable and controllable, but gen-
eral enough to be applicable to other classes of com-
puter architectures and network types such as
Myrinet, and 

• remain independent of any particular protocol, proto-
col abstraction or implementation method.

 

3 The user-level network interface architec-
tur e

 

The user-level network interface (U-Net) architecture
is inspired by the facilities provided by many DMA-
capable ethernet and FDDI controllers in use today. It
simplifies and virtualizes the interface in such a way that
a combination of operating system and hardware mech-
anisms can provide every process

 

1

 

 the illusion of own-
ing the interface to the network. Depending on the
sophistication of the actual hardware, the U-Net compo-
nents manipulated by a process may correspond to real
hardware in the NI, to memory locations that are inter-
preted by the OS, or to a combination of the two. The
role of U-Net is limited to multiplexing the actual NI
among all processes accessing the network and enforc-
ing protection boundaries as well as resource consump-
tion limits. In particular, a process has control over both
the contents of each message (with the exception of the
source and destination addresses used for protection)
and the management of send and receive resources, such
as buffers.

 

3.1 Building blocks

 

The U-Net architecture is composed of three main
building blocks, shown in Figure 3: 

 

communication seg-
ments

 

 which are regions of memory that hold message
data, 

 

message queues

 

 which hold descriptors for mes-
sages that have been received or that are to be sent, and

 

endpoints

 

 which serve as the basic addressing unit
across the network. Each process that wishes to access
the network first creates one or more endpoints, then

 

1. The terms “process” and “application” are used inter-
changeably to refer to arbitrary unprivileged UNIX pro-
cesses.

 

associates a communication segment and a set of 

 

send

 

,

 

receive

 

, and 

 

free

 

 message queues with each endpoint.
Multiple communication segments can be used to keep
the buffer management of different communication
channels disjoint, and multiple endpoints may share a
single set of queues

 

2

 

. After this set-up, the name of each
endpoint serves as a network-wide address to which
messages can be sent and from which messages can
originate. The mechanism used by processes to find out
about each other’s endpoint addresses is external to the
U-Net architecture.

Endpoints also serve as the unit of protection among
multiple processes accessing the network as well as
across the network. This is achieved using three mecha-
nisms:

• endpoints, communication segments, and message
queues are only accessible by the owning process,

• outgoing messages are tagged with the originating
endpoint address and incoming messages are demulti-
plexed by U-Net and delivered to the correct destina-
tion endpoint, and

• a per-endpoint access control list (ACL) restricts from
which endpoints incoming messages are accepted,
thus preventing unauthorized senders to consume all
receive resources.

 

3.2 Sending messages

 

To send a message, a user process composes the data
in the communication segment and pushes a descriptor
for the message onto the send queue. At that point, the
network interface is expected to pick the message up
and insert it into the network. If the network is backed-
up, the network interface will simply leave the descrip-
tor in the queue and eventually exert back-pressure to
the user process when the queue becomes full.The NI
provides a mechanism to indicate whether a message in
the queue has been injected into the network, typically
by setting a flag in the descriptor and providing random
read access to the entire queue.

 

2. This is encouraged because multiple sets of queues tend to
increase the overhead of servicing the network.

 

Figure 3: U-Net architecture building blocks.

 

recv
queue

free
queue

send
queuecommunication segment



www.manaraa.com

 

tr.doc, 4/1/1994 | 

 

DRAFT — Please do not distribute

 

 | 6

To avoid deadlock, the back-pressure mechanism
requires a careful contract between processes and U-
Net: the network must guarantee deadlock free-ness
under the condition that all communicating parties even-
tually pop all message descriptors from their receive
queues, in particular no process may indefinitely attempt
to push a message onto a full send queue without
accepting incoming messages.

 

3.3 Receiving messages

 

Incoming messages are demultiplexed by U-Net
based on the destination endpoint address: the data is
transferred into the appropriate communication seg-
ment, and a message descriptor is pushed onto the corre-
sponding receive queue. The receive model supported
by U-Net is either polling or event driven: the process
can periodically check the status of the receive queue or
it can register an upcall

 

1

 

 with U-Net. These upcalls are
used by the U-Net layer to signal that the state of the
receive queue satisfies a specific condition. The three
conditions supported by U-Net are: the receive queue is
non-empty, the receive queue is almost full, and the
receive queue has had a message pending for a while.
The first one allows event driven reception. The second
allows processes to be awakened before the receive
queue overflows. The third one allows the application to
poll at irregular intervals and to be notified if a message
arrives during a period of non-polling

 

2

 

. U-Net does not
specify the nature of the upcalls which could be UNIX
signal handlers, threads, or user-level interrupt handlers.

In order to amortize the cost of an upcall over the
reception of several messages it is important that a U-
Net implementation allow all messages pending in the
receive queue to be consumed in a single upcall. Fur-
thermore, a process must be able to disable upcalls
cheaply in order to form critical sections of code that are
atomic relative to message reception.

The upcalls are also used to signal error conditions to
the application. On the sending side an error upcall indi-
cates a serious problem such as an illegal message
descriptor contents or a fatal network error (e.g., net-
work/node unreachable). On the receiving end upcalls
are used to signal the arrival of corrupted messages, the
reception of messages from endpoints not permitted by
the ACL associated with the destination endpoint, and
the overflow of receive resources.

 

1. The term “upcall” is used in a very general sense to refer to
a mechanism which allows U-Net to signal an asynchronous
event to the application.

2. This mode is useful in parallel programs where the compiler
generates polls automatically but certain functions are
linked from sequential libraries and therefore do not include
polls.

 

3.4 Zero-copy vs. true zero-copy

 

As in all high performance networking architectures
one of the main challenges is minimizing copying of
message data. U-Net attempts to support a “true zero
copy” architecture in which data can be sent directly out
of the application data structures without intermediate
buffering and where the NI can transfer arriving data
directly into user-level data structures as well. In consid-
eration of current limitations on I/O bus addressing and
on NI functionality, the U-Net architecture specifies two
levels of sophistication: a 

 

base-level

 

 which requires an
intermediate copy into a networking buffer and corre-
sponds to what is generally referred-to as zero copy, and
a 

 

direct-access 

 

U-Net which supports true zero copy
without any intermediate buffering. 

The base-level U-Net architecture matches the opera-
tion of existing network adapters closely by providing a
reception model based on a queue of free buffers that
are filled by U-Net as messages arrive. It also regards
communication segments as a limited resource and
places an upper bound on their size such that it is not
feasible to regard communication segments as memory
regions in which general data structures can be placed.
This means that for sending each message must be con-
structed in a buffer in the communication segment and
on reception data is deposited in a similar buffer. This
corresponds to what is generally called “zero-copy”, but
which in truth represents one copy, namely between the
application’s data structures and a buffer in the commu-
nication segment.

Direct-access U-Net supports true zero copy protocols
by allowing communication segments to span the entire
process address space and by letting the sender specify
an offset within the destination communication segment
at which the message data is to be deposited directly by
the NI. The difficulties in implementing direct-access
come from the fact that it requires (i) the NI to include
some form of memory mapping hardware, (ii) all of
physical memory to be addressable from the NI, and (iii)
page faults on message arrival to be handled appropri-
ately.

The U-Net implementations described here support
the base-level architecture because the hardware avail-
able does not support the memory mapping required for
the direct-access architecture. In addition, the band-
width of the ATM network used does not warrant the
enhancement because the copy overhead is not a domi-
nant cost. The following subsections describe the base-
level and direct-access U-Net architectures, as well as
two base-level implementations on an ATM cluster of
workstations.



www.manaraa.com

 

tr.doc, 4/1/1994 | 

 

DRAFT — Please do not distribute

 

 | 7

 

3.5 Base-level U-Net architecture

 

The base-level U-Net architecture supports a queue-
based interface to the network which stages messages in
a limited-size communication segment on their way
between the network and application data structures.
The communication segments are allocated by the pro-
cess to buffer message data and they are typically
pinned to physical memory which makes them a scarce
resource that must be allocated across all processes. In
the base-level U-Net architecture send and receive
queues hold descriptors with information about the des-
tination, respectively origin, endpoint addresses of mes-
sages, their length, as well as offsets within the
communication segment to the buffers holding the data.
Free queues hold descriptors for free buffers that are
made available to the network interface for storing
arriving messages.

As an optimization for small messages—which are
used heavily as control messages in protocol implemen-
tation—the send and receive queues may hold entire
small messages in descriptors (i.e., instead of pointers to
the data). This avoids buffer management overheads and
can improve the round-trip latency dramatically. The
size of these small messages is implementation depen-
dent and typically reflects the properties of the underly-
ing network.

The management of send buffers is entirely up to the
process: the U-Net architecture does not place any con-
straints on the size or number of buffers nor on the allo-
cation policy used. The only restrictions are that buffers
lie within the communication segment, that they be
properly aligned for the requirements of the network
interface (e.g., to allow DMA transfers), and that each
message be spread over not more than a small fixed
number of buffers. The process also provides receive
buffers explicitly to the NI via the free queue but it can-
not control the order in which these buffers are filled
with incoming data.

 

3.6 Kernel emulation of U-Net

 

Given that communication segments and message
queues generally are scarce resources, it is often imprac-
tical to provide every process with U-Net endpoints and
furthermore many applications (such as telnet) do not
really benefit from that level of performance. Yet, for
software engineering reasons it may well be desirable to
use a single interface to the network across all applica-
tions. The solution to this dilemma is to provide applica-
tions with kernel-emulated U-Net endpoints. To the
application these emulated endpoints look just like regu-
lar ones, except that the performance characteristics are
quite different because the kernel multiplexes all of
them onto a single real endpoint.

 

3.7 Dir ect-Access U-Net architecture

 

Direct-access U-Net is a strict superset of the base-
level architecture. It allows communication segments to
span the entire address space of a process and it allows
senders to specify an offset in the destination communi-
cation segment at which the message data is to be
deposited.

The main advantage of the direct-access architecture
over the base-level is that message data can be trans-
ferred directly into application data structures without
any intermediate copy into a buffer. While this form of
communication requires quite some synchronization
between communicating processes, parallel language
implementations, such as Split-C, can easily take advan-
tage of this facility.

The main problem with the direct-access U-Net archi-
tecture is that it is difficult to implement on current
workstation hardware: the NI must essentially contain
an MMU that is kept consistent with the main proces-
sor’s and the NI must be able to handle incoming mes-
sages which are destined to an unmapped virtual
memory page. At a more basic hardware level, the lim-
ited number of address lines on most I/O buses makes it
impossible for an NI to access all of physical memory
such that even with an on-board MMU it is very difficult
to support arbitrary-sized communication segments.

 

4 U-Net on a first-generation ATM interface

 

The Fore systems SBA-100 ATM interface is typical
of the first generation of ATM interfaces available. It is
extremely simple and rather similar to the network inter-
faces used in parallel machines, such as the CM-5. The
SBA-100 provides a 36-cell deep output FIFO as well as
a 292-cell input FIFO. To send a cell the processor
stores 56 bytes into the memory-mapped output FIFO
and to receive a cell it reads 56 bytes from the input
FIFO. A register in the interface indicates the number of
cells available in the input FIFO. The only function per-
formed in hardware, beyond simply moving cells
onto/off the fiber, is ATM header CRC calculation. In
particular, no DMA, no payload CRC calculation

 

1

 

, and
no segmentation and reassembly of multi-cell packets
are supported by the interface.

 

4.1 U-Net/100 implementation

 

SBA-100 does not have any protection mechanisms in
hardware which would allow mapping the device into
user-space, nor can it be programmed to implement the
U-Net architecture directly. The U-Net architecture is
therefore implemented by the main processor and the

 

1. The card calculates the AAL3/4 checksum over the payload
but not the AAL5 CRC required here.



www.manaraa.com

 

tr.doc, 4/1/1994 | 

 

DRAFT — Please do not distribute

 

 | 8

kernel provides emulated U-Net endpoints to the appli-
cations as described in §3.6.

The implementation uses previously developed tech-
nology[17] consisting of two parts: a device driver that
is dynamically loaded into the kernel and a user-level
library implementing the AAL5 segmentation and reas-
sembly (SAR) layer. A fast transmission path is imple-
mented, consisting of two trap instructions which lead
directly to code for sending and receiving individual
ATM cells. The traps to send and receive cells are care-
fully crafted assembly language routines. Each routine
is small (28 and 43 instructions for the send and receive
traps, respectively).

For each endpoint U-Net allocates a corresponding
communication segment and queues. Connections must
be opened explicitly and a single page is assigned to
each one for placing outgoing cells and a number of
pages are held for receiving messages.

The AAL5 SAR library implements the base-level U-
Net interface; it handles segmentation and reassembly
of PDUs and checks the CRC. The AAL5 library breaks
the PDU into ATM cells, calculates the payload CRC in
the process, writes the cells into the send segment, and
calls the write trap to transfer the PDU into the SBA-
100 transmit FIFO.

Reception of messages takes place when the applica-
tion calls the receive routine of the AAL5 layer as part
of its poll routine. AAL5 receives cells by calling the
read trap, reassembling the cells into a PDU and check-
ing the payload CRC of the received message, until
there are no more cells left to pick up from the NI. Small
(up to 40 bytes) messages are placed in an entry in the
receive queue. Larger messages are placed in the receive
segment at addresses obtained from the free queue, and
the offsets are written into the receive queue entry. U-
Net also provides the address of the originating endpoint
and the PDU size. Receive buffers are returned to the
free queue by the application.

 

4.2 Performance

 

The U-Net implementation was evaluated on two
60Mhz SPARCstation-20s running SunOS 4.1.3 and
equipped with Fore Systems SBA-100 interfaces. The
ATM network consists of 140Mbit/s TAXI fi bers lead-
ing to a Fore Systems ASX-200 switch 

The end-to-end round trip time of a single-cell mes-
sage, measured at the U-Net/100 interface, is 66

 

µ

 

s. A
consequence of the lack of hardware to compute the
AAL5 CRC is that 33% of the send overhead and 40%
of the receive overhead in the AAL5 processing is due
to CRC computation. The cost breakup is shown in

Table 1. Given the send and receive overheads, the U-

Net/100 provides a bandwidth of 6.8MBytes/s for PDUs
of 1KBytes.

 

5 U-Net on a second-generation ATM inter -
face

 

The second generation of ATM network interfaces
produced by Fore Systems, the SBA-200, is substan-
tially more sophisticated than the SBA-100 and includes
an on-board processor to accelerate segmentation and
reassembly of PDUs as well as to transfer data to/from
host memory using DMA. This processor is controlled
by firmware which is downloaded into the on-board
RAM by the host. The U-Net implementation described
here uses this feature to implement the base-level archi-
tecture directly on the SBA-200.

The SBA-200 consists of an Intel i960 processor,
256Kbytes of memory, a DMA-capable SBus interface,
a simple FIFO interface to the ATM fiber (similar to the
SBA-100), and an AAL5 CRC generator. The i960 is
clocked at 25Mhz and the DMA has a “fly-by” feature
such that cell data need not pass through the i960’s reg-
isters as it moves between the SBus and the network
FIFOs. The host processor can map the SBA-200 mem-
ory into its address space in order to communicate with
the i960 during operation.

The experimental set-up used consists of five 60Mhz
Sparcstation-20 and three 50Mhz Sparcstation-10 work-
stations connected to a Fore Systems ASX-200 ATM
switch with 140Mbit/s TAXI fi ber links.

 

5.1 Fore firmwar e operation and performance

 

The complete redesign of the SBA-200 firmware for
the U-Net implementation was motivated by an analysis
of Fore’s original firmware which showed poor perfor-
mance. The apparent rationale underlying the design of
Fore’s firmware is to off-load the specifics of the ATM
adaptation layer processing from the host processor as
much as possible. The kernel-firmware interface is pat-
terned after the data structures used for managing BSD
mbufs and System V streams bufs. It allows the i960 to
traverse these data structures using DMA in order to

Operation Time (

 

µ

 

s)

1-way send and rcv across 
switch (at trap level) 21 

Send overhead (AAL5) 7

Receive overhead (AAL5) 5

Total (one-way) 33

 

Table 1: Cost breakup for a single-cell round-trip (AAL5)



www.manaraa.com

 

tr.doc, 4/1/1994 | 

 

DRAFT — Please do not distribute

 

 | 9

determine the location of message data, and then to
move it into or out of the network rather autonomously.

The performance potential of Fore’s firmware was
evaluated using a test program which maps the kernel-
firmware interface data structures into user space and
manipulates them directly to send raw AAL5 PDUs
over the network. The measured round-trip time was
approximately 160

 

µ

 

s while the maximum bandwidth
achieved using 4Kbyte PDUs was 13Mbytes/sec. This
performance is rather discouraging: the round-trip time
is almost 3 times larger than using the much simpler and
cheaper SBA-100 interface, and the bandwidth for rea-
sonable sized PDUs falls short of the 15.2Mbytes/sec
peak fiber bandwidth.

A more detailed analysis showed that the poor perfor-
mance can mainly be attributed to the complexity of the
kernel-firmware interface. The message data structures
are more complex than necessary and having the i960
follow linked data structures on the host using DMA
incurs high latencies. Finally, the host processor is much
faster than the i960 and so off-loading can easily back-
fire.

 

5.2 U-Net firmwar e

 

The base-level U-Net implementation for the SBA-
200 modifies the firmware to add a new U-Net compati-
ble interface

 

1

 

. The main design considerations for the
new firmware were to virtualize the host-i960 interface
such that multiple user processes can communicate with
the i960 concurrently, and to minimize the number of
host and i960 accesses across the SBus.

The new host-i960 interface reflects the base-level U-
Net architecture directly. Communication segments are
pinned to physical memory and mapped into the i960’s
DMA space, receive queues are similarly allocated such
that the host can poll them without crossing the Sbus,
while send and free queues are actually placed in SBA-
200 memory and mapped into user-space such that the
i960 can poll these queues without DMA transfers.

The i960 provides protection to user processes on a
per endpoint basis. Every endpoint to endpoint connec-
tion is associated with a transmit/receive VCI pair

 

2

 

which is registered with the i960 via the kernel at the
time of connection set up. For such control operations,
there is a single i960-resident command queue that is
used by the kernel. Processes can only access the com-
mand queue through a system call to the device driver

 

1. For software engineering reasons, the new firmware’s func-
tionality is a strict superset of Fore’s such that the traditional
networking layers can still function while new applications
can use the faster U-Net.

2. ATM is a connection-oriented network that uses virtual cir-
cuit identifiers (VCIs) to name one-way connections.

 

that interfaces with the SBA-200 and the kernel can val-
idate the connection request at set up time. In the current
prototype, the connection set up checks have not been
implemented. The communication segments and mes-
sage queues for distinct endpoints are disjoint and are
only present in the address space of the process that cre-
ates the endpoint.

In order to send a PDU, the host uses a double word
store to the i960-resident transmit queue to provide a
pointer to a transmit buffer, the length of the PDU and
the destination endpoint address to the i960. Single cell
PDU sends are optimized as a special case because
many small messages are less than a cell in size. For
larger sized messages, the host-i960 DMA occurs in 1K
byte chunks and uses the “fly-by” to minimize transfer
times and to compute the AAL5 CRC. The entire trans-
mission process is somewhat pipelined where the i960
requests a 1Kbyte chunk at one go and keeps putting the
data on the network as it appears in the DMA input
FIFO instead of requesting one cell payload at a time
and waiting for the read to complete before sending the
cell out.

To receive cells from the network, the i960 periodi-
cally polls the network input FIFO. Receiving single
cell messages is special-cased to improve the round-trip
latency for small messages. The single cell messages are
directly transferred into the next receive queue entry
which is large enough to hold single cell messages—this
avoids buffer allocation and extra DMA for the buffer
pointers. Longer messages are transferred to fixed size
receive buffers whose offsets in the communication seg-
ment are pulled off the i960-resident free queue. When
the last cell of the PDU is received, the message descrip-
tor including the pointers to the buffers is DMA-ed into
the next receive queue entry.

 

5.3 Performance

 

Figure 4 shows the round trip times for messages up
to 1K bytes on the raw base level U-Net implementation
over the SBA-200, i.e. the time for a message to go from
one host to another via the switch and back. The round-
trip time is 60

 

µ

 

s for a one-cell message due to the opti-
mization, which is rather low, but not quite at par with
parallel machines, like the CM-5, where custom net-
work interfaces allow round-trips in 12

 

µ

 

s. Longer mes-
sages start at 86

 

µ

 

s for 41 bytes and cost roughly and
extra X

 

µ

 

s per additional 48 bytes. Figure 5 shows the
bandwidth over the raw base level U-Net interface in
Mbytes/sec for message sizes varying from 50 to 8K
bytes. It is clear from the graph that with PDU sizes as
low as 1Kbytes, the fiber can be saturated.



www.manaraa.com

 

tr.doc, 4/1/1994 | 

 

DRAFT — Please do not distribute

 

 | 10

 

5.4 Memory requirements

 

The current implementation uses a fixed number of
memory pages pinned down to physical memory as
communication segments for all endpoints. These pages
are also mapped to the SBA-200’s DMA space. In addi-
tion, each endpoint has its own set of send, receive and
free buffer queues, out of which two reside on the i960
and are mapped to user-space. The number of distinct
applications that can be run concurrently is therefore
limited by the amount of memory that can be pinned
down on the host, the size of the DMA address space

 

Figure 4: Round-trip times over the raw U-Net AAL5 inter-
face as a function of message size

 

0

50

100

150

200

250

300

350
0

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

us

bytes

U-Net AAL5
round-trip

 

Figure 5: Bandwidth over the raw U-Net AAL5 interface as a
function of message size.

 

0

2

4

6

8

10

12

14

16

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

Mbytes/s

bytes

U-Net AAL5 bandwidth

 

and, the i960 memory size. Memory resource manage-
ment is therefore an important issue if access to the net-
work interface is to be scalable. A reasonable approach
would be to provide a mechanism by which the i960, in
conjunction with the kernel, would provide some ele-
mentary memory management functions which would
allow dynamic allocation of the DMA address space to
the communication segments of active user processes.
The exact mechanism to achieve such an objective with-
out compromising the efficiency and simplicity of the
interface remains a challenging problem.

 

6 TCP/IP and UDP/IP protocols.

 

The success of new abstractions often depends on the
level to which they are able to support legacy systems.
In modern distributed systems this comes down to the
need to support the TCP/IP protocol suite augmented
with RPC and group oriented communication. U-Net
provides a number of these protocols as a user-level
library built on the base-level U-Net functionality. 

Performance of a new networking technology is often
put into perspective by measuring the throughput and
latency of the TCP & UDP protocols. The performance
of these protocols using the vendor supplied ATM driver
software is disappointing; the UDP maximum band-
width is only achieved by using very large transfer sizes
(larger than 8Kbytes), while TCP under all circum-
stances will not perform better that at 55% of the maxi-
mum. The latency performance, however, is even more
dramatic: for small message sizes the latency of both
UDP and TCP messages is worse than the latency on
Ethernet: it simply does not reflect the increased capa-
bilities of the ATM technology. Figure 6 shows the
latency of the Fore-ATM based protocols compared to
those over Ethernet.

 

6.1 The non-problem with TCP/IP

 

The TCP/IP suite of protocols is often considered to
be ill-suited for use over high-speed networks like ATM,
but experience has shown that often the core of the
problems with TCP/IP lie in the particular 

 

implementa-
tions

 

 and their 

 

integration

 

 into the operating system.
This is indeed the case where the Fore driver software
tries to deal with the generic, low-performance buffer
strategies of the BSD based kernel. In contrast, using U-
Net, TCP and UDP can be implemented at user-level
which allows the implementation to be tuned to the
characteristics of the network and without the need to
generalize. Specifically, U-Net TCP and UDP tune the
buffer and timer management and allow better error and
congestion feed-back to the application. As a result, U-
Net TCP and UDP deliver the low-latency and high
bandwidth communication expected of ATM networks



www.manaraa.com

 

tr.doc, 4/1/1994 | 

 

DRAFT — Please do not distribute

 

 | 11

without resorting to excessive buffer schemes or the use
of large network transfer units, while maintaining full
interoperability with non-U-Net implementations.

 

1

 

6.2 Removing the TCP/IP kernel resource problems.

 

A major problem in the implementation of kernel
based protocols is the limited kernel resources available
which need to be shared between many potential net-
work-active processes. By implementing TCP & UDP at
user-level, efficient solutions are available for problems
which are caused by using the kernel as the single proto-
col processing unit. Not only does U-Net remove all
copy operations from the protocol path but it also allows
the buffering strategy to depend on the resources at the
process instead of the scarce kernel network buffers.
The restricted size of the receive socket buffer (max.
52Kbytes) has been a common problem with the BSD
kernel communication path: already at Ethernet speeds
buffer overrun is the cause of message loss in the case of
high bandwidth UDP data streams. By removing this
restriction, the resources of the actual recipient, instead
of those of the intermediate processing unit, now
become the main control factor and this can efficiently
be incorporated into the end-to-end flow-control mecha-
nisms.

 

1. U-Net TCP and UDP are interoperable in the sense that they
comply with the standard TCP/IP and UDP/IP RFC’s. The
use of ATM VCIs however is currently incompatible with
Fore’s implementations.

 

Figure 6: TCP and UDP round-trip latencies over ATM and
Ethernet. as a function of message size.

 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

us

bytes

Fore ATM TCP

Fore ATM UDP

Ethernet UDP

Ethernet TCP

 

The impact of the kernel buffer management in com-
bination with the Fore buffering scheme is seen in
Figure 7 which shows the UDP throughput. The saw-
tooth behavior is caused by the buffer allocation
scheme, where first large (1Kb) buffers are filled with
data and the remainder (if less than 512 bytes) is copied
into single small mbufs (112 bytes). This allocation
method has a strong degrading effect on the perfor-
mance of the protocols because unlike the large cluster
buffers that have a reference count mechanism associ-
ated with them, the smaller mbufs do not have this opti-
mization. 

For U-Net, a scatter-gather message mechanism is
implemented to support efficient construction of net-
work buffers. The data blocks are allocated within the
receive and transmit communication segments and a
simple reference count mechanism allows them to be
shared by several messages without the need for copy
operations. 

Given that a process has full control over sending U-
Net messages it is possible to provide correct feedback
to the application about the state of the transmission
queue and it is easy to establish a back-pressure mecha-
nism when the transmission queues are full. This over-
comes, for example, problems with the current SunOS
implementation which will drop random packets from
the device transmit queue if there is overload, all with-
out notifying the sending process. 

 

6.3 IP

 

The U-Net/IP implementation exploits functionality
offered by the U-Net architecture to select the protocol
module that handles each message. The demultiplex
information tagged to the message by U-Net,. The func-
tionality of IP on the outgoing path is reduced to map-

 

Figure 7: UDP bandwidth as a function of message size.

 

0

20

40

60

80

100

120

140

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

0

2

4

6

8

1 0

1 2

1 4

1 6

Mbits/s Mbytes/s

bytes

U-Net UDP

Fore UDP
sender

Fore UDP
receiver



www.manaraa.com

 

tr.doc, 4/1/1994 | 

 

DRAFT — Please do not distribute

 

 | 12

ping every message onto a particular connection. IP
over U-Net exports an MTU of 9Kbytes and does not
support fragmentation, as this is known to be a potential
source for wasting bandwidth and triggering packet
retransmissions[10]. TCP provides its own fragmenta-
tion mechanism and the application level should assist
UDP in achieving the same functionality. Given this
strongly reduced functionality IP has been collapsed
into the transport level protocols to allow efficient pro-
cessing.

 

6.4 UDP

 

The core functionality of UDP is twofold: an addi-
tional layer of demultiplexing over IP based on port
identifiers and some protection against corruption by
adding a 16 bit checksum on the data and header parts of
the message. In the U-Net implementation the demulti-
plexing is simplified by using the source communication
segment information passed-on by U-Net. The check-
sum adds a processing overhead of 1

 

µ

 

s per 100 bytes,
and it can be switched off by applications that use data
protection at a higher level or are satisfied by the 32-bit
CRC at the U-Net AAL5 level. 

The performance of U-Net UDP is compared to the
kernel UDP in Figures 7 and 8. The first shows the
achieved bandwidth while the latter plots the end-to-end
round-trip latency as a function of message size For the
kernel UDP the bandwidth is measured as perceived at
the sender and as actually received: the losses can all be
attributed to kernel buffering problems at both sending

 

Figure 8: UDP and TCP round-trip latencies as a function of
message size.

 

0

200

400

600

800

1000

1200

1400

1600

0

20
0

40
0

60
0

80
0

10
00

bytes

us

Fore UDP

Fore TCP

U-Net UDP

U-Net TCP

 

and receiving hosts. U-Net UDP does not experience
any losses and only the receive bandwidth is shown.

 

6.5 TCP

 

TCP adds two properties that make it an attractive
protocol to use in a number of settings: reliability and
flow control. Reliability is achieved through a simple
acknowledgment scheme and flow control through the
use of advertised receive windows. TCP over high-
speed networks has been studied extensively, especially
in a wide-area setting[14] and a number of changes and
extensions have been proposed to make TCP function
correctly in settings where a relatively high delay can be
expected[3]. It has been argued lately that these changes
are also needed to solve the deficiencies that occur
because of the high-latency of the ATM kernel software.
U-Net TCP is able to achieve acceptable performance
without any modifications to the general algorithms,
without the use of large sequence numbers and without
extensive buffer reservations.

The performance of TCP does not depend as much on
the rate with which the data can be pushed out on the
network as on the product of bandwidth and round-trip
time, which indicates the amount of buffer space needed
to maintain a steady reliable high speed flow. The win-
dow size indicates how many bytes the module can send
before it has to wait for acknowledgments and window
updates from the receiver. If the updates can be returned
to the sender in a very timely manner only a relatively
small window is needed to achieve the maximum band-
width. Figure 9 shows that in most cases U-Net TCP
achieves a 14-15 Mbytes/sec bandwidth using an
8Kbyte window, while the kernel TCP/ATM combina-
tion will, even in the case of the maximum 64K window,

 

Figure 9: TCP bandwidth as a function of data generation by
the application.

 

0

20

40

60

80

100

120

140

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

0

2

4

6

8

1 0

1 2

1 4

1 6

Mbits/s Mbytes/s

bytes

U-Net TCP

Fore TCP



www.manaraa.com

 

tr.doc, 4/1/1994 | 

 

DRAFT — Please do not distribute

 

 | 13

not achieve a higher bandwidth than 7 Mbytes/sec. The
round-trip latency performance of both kernel and U-
Net TCP implementations is shown in Figure 8 and
highlights the fast U-Net TCP round-trip which permits
the use of a small window.

Another important factor is the size of the segments
that are transmitted; using larger segments it is more
likely that the maximum bandwidth can be achieved, but
recent work has shown that TCP can perform poorly
over ATM if the segment size is large[10] due to the fact
that the underlying cell reassembly mechanism causes
the entire segment to be discarded if a single ATM cell
is dropped. A number of solutions are available, but
none provide a mandate to use large segment sizes. The
standard configuration for U-Net TCP uses 2048 byte
segments, which is sufficient to achieve 13-
14 Mbytes/sec bandwidth in combination with an
8 Kbyte window. 

Another potential problem that has been solved within
U-Net TCP is the bad ratio between the granularity of
the protocol timers and the round-trip time estimates.
The retransmission timer in TCP is set as a function of
the estimated round trip time, which is in the range from
60 to 700 microseconds, but the kernel protocol timer
(

 

pr_slow_timeout

 

) has a granularity of 500 millisec-
onds. When a TCP packet is discarded because of cell
loss or dropped due to congestion the retransmit timer
gets set to a relatively large value, compared to the
actual round-trip time. To ensure timely reaction to pos-
sible packet loss U-Net TCP uses a 1 millisecond timer
granularity, which is constrained by the reliability of the
Unix user-level interval timer. 

The BSD implementation uses another timer
(

 

pr_fast_timeout

 

) for the transmission of a delayed
acknowledgment in the case that no send data is avail-
able for piggybacking and that a potential transmission
deadlock needs to be resolved. This timer is used to
delay the acknowledgment of every second packet for
up to 200ms. U-Net TCP does not use this delayed ack
strategy given the low cost of an active acknowledg-
ment: which consists of only a 40 byte TCP/IP header
and thus can be handled efficiently by inline U-Net
reception. As a result, the available send window is
updated in the most timely manner possible, laying the
foundation for maximal bandwidth exploitation.

 

7 U-Net Active Messages implementation 
and performance

 

The U-Net Active Messages (UNAM) layer is a pro-
totype that conforms to the Generic Active Messages
(GAM) 1.1 specification[6]. Active Messages is a mech-
anism that allows efficient overlapping of communica-

tion with computation in multiprocessors.
Communication using Active Messages is in the form of
requests and matching replies. An active message con-
tains the address of a handler that gets called on receipt
of the message followed by upto four words of argu-
ments. The function of the handler is to pull the message
out of the network and integrate it into the ongoing com-
putation. A request message handler may or may not
send a reply message. However, in order to prevent live-
lock, a reply message handler cannot send another reply.

Generic Active Messages consists of a set of primi-
tives that higher level layers can use to initialize the
GAM interface, send request and reply messages and
perform bulk gets and stores. GAM provides a guaran-
tee of best effort message delivery which implies that a
message that is sent will be delivered to the recipient
barring network partitions, node crashes, or other cata-
strophic failures.

 

7.1 Active Messages implementation

 

The UNAM implementation consists of a user level
library that exports the GAM 1.1 interface and uses the
U-Net interface. The library is rather simple and only
performs the flow-control and retransmissions necessary
to implement best-effort delivery and the Active Mes-
sages-specific part is just dispatching handlers.

7.1.1 Flow Control Issues

In order to ensure reliable message delivery, UNAM
uses a simple window-based flow control protocol. The
window size 

 

w

 

 is fixed and every outgoing PDU is
assigned a sequence number in the range [0, 2

 

w

 

 - 1].
Every endpoint preallocates enough transmit and
receive buffers to be able to hold two full windows of
received as well as transmitted messages for every end-
point it communicates with, one window each for
requests and replies, respectively. 

Request messages which do not require a reply are
explicitly acknowledged. The distinction between
request and reply messages allows several acknowledg-
ments to be piggy-backed onto the same reply message
which reduces the network traffic. A standard retrans-
mission mechanism is used to deal with lost requests or
replies. It should be noted that the flow control imple-
mented here is an end-to-end flow control mechanism
which does not attempt to minimize message losses due
to congestion in the network.

7.1.2 Sending and Receiving U-Net Active Messages

To send a request message, UNAM first processes any
outstanding messages in the receive queue, drops a copy
of the message to be sent into a pre-allocated transmit
buffer and pushes a descriptor onto the send queue. If



www.manaraa.com

 

tr.doc, 4/1/1994 | 

 

DRAFT — Please do not distribute

 

 | 14

the send window is full, the sender polls for messages
received until there is space in the send window or until
a time-out occurs and the entire window of messages is
retransmitted. The sending of reply messages or explicit
acknowledgment is similar except that the sender does
not poll for messages before sending (in order to avoid
live-lock).

The UNAM layer receives messages by explicit poll-
ing. On message arrival, UNAM loops through the
receive queue, pulls the messages out of the receive
buffers, dispatches the handlers, sends explicit acknowl-
edgments where necessary, and frees the buffers and the
receive queue entries.

 

7.2 U-Net Active Messages micro-benchmarks

 

Three different micro-benchmarks were run to deter-
mine the round trip time for single cell messages, the
bandwidth for bulk store and the bandwidth for pipe-
lined bulk get operations. The round trip time was esti-
mated by repeatedly sending a single cell active
message to a remote host specifying a handler that sim-
ply replies. The measured round trip time is 66

 

µ

 

s. Since
the round trip time on the raw base level U-Net is 60

 

µ

 

s
the UNAM overhead is about 6

 

µ

 

s to send a message,
receive it, reply and receive the reply.

The bulk store bandwidth was measured by repeat-
edly storing a block of a specified size to a remote node
in a loop and measuring the total time taken. The mea-
surement was repeated for sizes varying from 16 to
3800 bytes. The pipelined bulk get bandwidth was mea-
sured similarly by repeatedly sending bulk get requests
for a specified size in a loop and waiting for all the bulk
gets to complete. This measurement was also repeated
for sizes varying from 16 to 3800 bytes. Figure 10
shows the store and get bandwidths for the varying mes-
sage sizes. The upper curve represents the store band-
width while the lower curve represents the get
bandwidth. The maximal store bandwidth achieved is

 

Figure 10: Bulk Store and Get bandwidths for UNAM

 

0

2

4

6

8

10

12

14
0

16
0

35
2

54
4

73
6

92
8

13
08

20
76

28
44

36
12

Mbytes/s

bytes

Bulk Get
Bulk Store

 

13.66 Mbytes/sec for transfer sizes of 3800 bytes which
still leaves room for improvement.

The pipelined get bandwidth closely follows the store
bandwidth for small sized messages but begins to fall
behind around a transfer size of 400 bytes and goes up
to a maximum of 13.04 Mbytes/sec for transfer sizes of
3800 bytes.

 

7.3 Summary

 

[...]

 

8 Split-C application benchmarks

 

Split-C[4] is a simple parallel extension to C for pro-
gramming distributed memory machines using a global
address space abstraction. It is implemented on top of
Generic Active Messages and is used here to demon-
strate the impact of U-Net on applications written in a
parallel language. A Split-C program is comprised of a
thread of control per processor from a single code image
and the threads interact through reads and writes on
shared data. The type system distinguishes between
local and global pointers such that the compiler can
issue the appropriate calls to Active Messages whenever
a global pointer is dereferenced. Thus, dereferencing a
global pointer to a scalar variable turns into a request
and reply Active Messages sequence exchange with the
processor holding the data value. Split-C also provides
bulk transfers which map into Active Message bulk gets
and stores to amortize the overhead over a large data
transfer.

Split-C has been implemented on the CM-5, Paragon,
SP-1, Meiko CS-2, and Cray T3D supercomputers as
well as over the U-Net Generic Active Messages. A
small set of application benchmarks is used here to com-
pare the U-Net version of Split-C to the CM-5[18] and
Meiko CS-2[15] versions. This comparison is particu-
larly interesting as the CM-5 and Meiko machines are
easily characterized with respect to the U-Net ATM
cluster as shown in Table 2: the CM-5’s processors are

Machine
CPU
speed

message
overhead

round-trip
latency

network
bandwidth

CM-5 33 Mhz
Sparc-2

3

 

µ

 

s 12

 

µ

 

s 10Mb/s

Meiko
CS-2

40Mhz
Supersparc

11

 

µ

 

s 25

 

µ

 

s 39Mb/s

U-Net
ATM

50/60 Mhz
Supersparc

6

 

µ

 

s 66

 

µ

 

s 14Mb/s

 

Table 2: Comparison of CM-5, Meiko CS-2, and U-Net ATM 
cluster computation and communication performance charac-
teristics



www.manaraa.com

 

tr.doc, 4/1/1994 | 

 

DRAFT — Please do not distribute

 

 | 15

slower than the Meiko’s and the ATM cluster’s, but its
network has lower overheads and latencies. The CS-2
and the ATM cluster have very similar characteristics
with a slight CPU edge for the cluster and a faster net-
work for the CS-2.

The Split-C benchmark set used here is comprised of
seven programs: a blocked matrix multiply[4], a sample
sort optimized for small messages[5], the same sort opti-
mized to use bulk transfers[15], two radix sorts opti-
mized for small and bulk transfers, respectively, a
connected components algorithm[11], and a conjugate
gradient solver. The matrix multiply and the sample
sorts have been instrumented to account for time spent
in local computation phases and in communication
phases separately such that the time spent in each can be
related to the processor and network performance of the
machines. (The other benchmarks will be instrumented
similarly for the final paper.) The execution times for
runs on eight processors are shown in Figure 11; the
times are normalized to the total execution time on the
CM-5 for ease of comparison. The matrix multiply uses
matrices of 4 by 4 blocks with 128 by 128 double floats

 

Figure 11: Comparison of seven Split-C benchmarks on the
CM-5, the U-Net ATM cluster, and the Meiko CS-2. The exe-
cution times are normalized to the CM-5 and the computa-
tion/communication breakdown is shown for three

 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

netw.
cpu

C
M

-5

A
T

M

M
ei

ko

C
M

-5

A
T

M

M
ei

ko

C
M

-5

A
T

M

M
ei

ko

C
M

-5

A
T

M

M
ei

ko

matrix multiply
128x128 16x16

sample sort, 512K
sml msg

blocks blocks
bulk msg

0

1

2

CM-5 ATM Meiko

radix sort

C
M

-5

A
T

M

M
ei

ko

C
M

-5

A
T

M

M
ei

ko

C
M

-5

A
T

M

M
ei

ko

C
M

-5

A
T

M

M
ei

ko

small msg
radix sort
bulk msg

connected
components

conjugate
gradient

 

each. The main loop multiplies two blocks while it
prefetches the two blocks needed in the next iteration.
The results show clearly the CPU and network band-
width disadvantages of the CM-5. The sample sort sorts
an array of 4 million 32-bit integers with arbitrary distri-
bution. The algorithm first picks 64 samples on each
processor, then sorts all the samples on one processor,
selects splitters to determine which range of values
should end up on each processor, broadcasts the split-
ters, permutes all the values to the right processor (this
is the main communication phase), and finally each pro-
cessor sorts its values locally (which contributes most to
the computation time). The version optimized for small
messages packs two values per message while the one
optimized for bulk transfers presorts the local values
such that each processor sends exactly one message to
every other processor during the permutation phase. The
performance again shows the CPU disadvantage of the
CM-5 and in the small message version that machine’s
per-message overhead advantage. The ATM cluster and
the Meiko come out roughly equal with a slight CPU
edge for the ATM cluster and a slight network band-
width edge for the Meiko. The bulk message version
improves the Meiko and ATM cluster performance dra-
matically with respect to the CM-5 which has a lower
bulk-transfer bandwidth. The performance of the radix
sort and the connected components benchmarks further
demonstrate that the U-Net ATM cluster of workstations
is roughly equivalent to the Meiko CS-2 and performs
worse than the CM-5 in applications using small mes-
sages (such as the small message radix sort and con-
nected components) but better in ones optimized for
bulk transfers.

 

9 Summary

 

The main objective of U-Net, to provide high-perfor-
mance low-latency communication, has been accom-
plished: The processing overhead on messages has been
minimized so that the latency experienced by the appli-
cation is dominated by the actual message transmission
time.

Using U-Net the round-trip latency for messages
smaller than 40 bytes is about 60 

 

µ

 

sec. This compares
favorably to other recent research results: the 

 

applica-
tion device channels 

 

(U. of Arizona) achieve 150 

 

µ

 

sec
latency for single byte messages and 16 byte messages
in the HP Jetstream environment have latencies starting
at 300 

 

µ

 

sec. Both research efforts however use dedi-
cated hardware capable of over 600 Mbits/sec compared
to the 140 Mbits/sec standard hardware used for U-Net.

Although the main goal of the U-Net architecture was
to remove the processing overhead to achieve low-
latency, a secondary goal, namely the delivery of maxi-



www.manaraa.com

 

tr.doc, 4/1/1994 | 

 

DRAFT — Please do not distribute

 

 | 16

mum network bandwidth, even with small messages,
has also been achieved. With message sizes as small as
900 bytes the network is saturated, while at smaller
sizes the dominant bottleneck is the i960 processor on
the network interface.

U-Net also demonstrates that removing the kernel
from the communication path can offer more than just
high performance: U-Net presents a simple network
interface architecture which simultaneously supports
traditional inter-networking protocols as well as novel
communication abstractions like Active Messages. The
TCP and UDP protocols implemented using U-Net
achieve latencies and throughput close to the raw maxi-
mum and Active Messages round-trip times are only a
few microseconds over the absolute minimum.

The final comparison of the 8-node ATM cluster with
the Meiko CS-2 and TMC CM-5 supercomputers using
a small set of Split-C benchmarks demonstrates that
with the right communication substrate networks of
workstations can indeed rival these specially-designed
machines. This encouraging result should, however, not
obscure the fact that significant additional system
resources, such as parallel process schedulers and paral-
lel file systems, still need to be developed before the
cluster of workstations can be viewed as a unified
resource.

 

10 Acknowledgments

 

U-Net wouldn’t look the way it does without the
numerous discussions, the many email exchanges, and
the taste of competition we had with friends in the UC
Berkeley NoW project, in particular David Culler, Alan
Mainwaring, Rich Martin, and Lok Tin Liu.

The Split-C section was only possible thanks to the
generous help of Klaus Eric Schauser at UC Santa Bar-
bara who shared his Split-C programs and provided
quick access to the Meiko CS-2 which is funded under
NSF grant #. The CM-5 results were obtained on the
UCB machine, funded under NSF grant #. Thanks also
to the UCB Split-C group for the benchmarks, in partic-
ular Arvind Krishnamurthy.

Most of the ATM workstation cluster was purchased
under contract F30602-94-C-0224 from Rome Labora-
tory, Air Force Material Command. We also thank Fore
Systems for making the source of the SBA-200 firm-
ware available to us: without it we would have been
stuck.

 

11 References

 

[1] T.E. Anderson, D.E. Culler, D.A. Patterson, et. al. 

 

A
Case for NOW (Networks of Workstations). 

 

IEEE Micro,
Feb. 1995, pages 54-64.

[2] M. Blumrich, C. Dubnicki, E.W. Felten and K. Li. 

 

Vir-
tual-Memory-Mapped Network Interfaces

 

. IEEE Micro,
Feb. 1995, pages 21-28.

[3] D. Borman, R. Braden, and V. Jacobson. 

 

TCP Extensions
for High Performance

 

. RFC 1323, May 1992.

[4] D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishna-
murthy, S. Lumetta, T. von Eicken, and K. Yelick. 

 

Intro-
duction to Split-C.

 

 In Proc. of Supercomputing '93

 

.

 

[5] D. E. Culler, A. Dusseau, R. Martin, K. E. Schauser. 

 

Fast
Parallel Sorting: from LogP to Split-C.

 

 In Proc. of
WPPP '93, July 93.

[6] D.E. Culler, et. al. 

 

Generic Active Message Interface
Specification, version 1.1

 

 http://now.cs.berke-
ley.edu/Papers/gam_spec.ps

[7] P. Druschel and L.L. Peterson. 

 

Fbufs: A High-Bandwidth
Cross-Domain Transfer Facility

 

. In Proc. of the 14th
SOSP. pages 189-202. December 1993.

[8] P. Druschel, L.L. Peterson, and B.S. Davie. 

 

Experiences
with a High-Speed Network Adaptor: A Software Per-
spective. 

 

In Proc. of SIGCOMM-94, pages 2-13, Aug
1994.

[9] A. Edwards, G. Watson, J. Lumley, D. Banks, C. Calam-
vokis and C.Dalton. 

 

User-space protocols deliver high
performance to applications on a low-cost Gb/s LAN

 

. In
Proc. of SIGCOMM-94, pages 14-23, Aug. 1994.

[10] C. Kent and J. Mogul. Fragmentation Considered Harm-
ful In Proc. of SIGCOMM-87. pages 390-410. Aug
1987.

[11] A. Krishnamurthy, S. Lumetta, D. E. Culler, and K.
Yelick. 

 

Connected Components on Distributed Memory
Machines.

 

 DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, Volume 00, 0000

[12] M. Lin, J. Hsieh, D. H. C. Du, J. P. Thomas, and J. A.
MacDonald. 

 

Distributed Network Computing over Local
ATM Networks.

 

 IEEE Journal on Selected Areas in Com-
munications, Special Issue on ATM LANs, to appear,
1995.

[13] C. Maeda and B.N. Bershad. 

 

Protocol Service Decompo-
sition for High-Performance Networking. 

 

In Proc. of the
14th SOSP, pages 244-255. Dec. 1993.

[14] A. Romanow and S. Floyd. 

 

Dynamics of TCP traffic over
ATM networks

 

. In Proc. of SIGCOMM-94. pages 79-88,
Aug. 94.

[15] K.E Schauser and C. J. Scheiman. E

 

xperience with
Active Messages on the Meiko CS-2.

 

 To appear.

[16] C.A. Thekkath, H.M. Levy, and E.D. Lazowska. 

 

Sepa-
rating Data and Control Transfer in Distributed Operat-
ing Systems

 

. In Proc. of the 6th Int’l Conf. on ASPLOS,
Oct 1994.

[17] T. von Eicken, Anindya Basu and Vineet Buch. 

 

Low-
Latency Communication Over ATM Networks Using
Active Messages. 

 

IEEE Micro, Feb. 1995, pages 46-53.

[18] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E.
Schauser. 

 

Active Messages: A Mechanism for Integrated
Communication and Computation.

 

 In Proc. of the 19th
ISCA, pages 256-266, May 1992.


